抛物线焦点面积公式抛物线焦点三角形面积公式为焦点三角形面积公式:S=(p/4)(t1-t2)sinθ
计算过程如下:
抛物线y²=2px,焦点F(p/2,0)
设过F的参数方程为 x=p/2+tcosθ y=tsinθ θ为直线倾角,t为直线上一点与F的距离,
当t>0时,点在F上方,
当t<0时,点在F下方
设直线与抛物线的交点A、B,A在上方,对应t1,t2(t2<0)
面积=S△AOF+S△BOF
=(1/2)OF*AFsinθ+(1/2)OF*BF*sinθ
=(1/2)(p/2)sinθ(t1-t2)
=(p/4)(t1-t2)sinθ
即抛物线焦点三角形面积S=(p/4)(t1-t2)sinθ
扩展资料椭圆的焦点三角形是指
以椭圆的两个焦点F1,F2与椭圆上任意一点P(不与焦点共线)为顶点组成的三角形。
在椭圆中,我们通常把焦点与过另一个焦点的弦所围成的三角形叫做焦点三角形,类似地,我们也把顶点与过另一个顶点所对应的焦点弦围成的三角形叫顶焦点三角形。在椭圆的顶焦点三角形中有许多与椭圆焦点三角形相类似的几何特征,蕴涵着椭圆很多几何性质。
1、焦点三角形的面积公式推导:设∠F₁PF₂=α双曲线方程为x^2/a^2-y^2/b^2=1因为P在双曲线上,由定义|PF₁-PF₂|=2a在焦点三角形中,由余弦定理得F₁F₂的平方=PF₁平方+PF₂平方-2PF₁PF₂cosα=|PF₁-PF₂|平方+2PF₁PF₂-2PF₁PF₂cosα(2c)^2=(2a)^2+2PF₁PF₂-2PF₁PF₂cosαPF₁PF₂=[(2c)^2-(2a)^2]/2(1-cosα)=2b^2/(1-cosα)焦点三角形的面积公式=1/2PF₁PF₂sinα=b^2sinα/(1-cosα)=b^2cot(α/2)=b^2/tan(θ/2)2、双曲线焦点三角形的内切圆与F1F2相切于实轴顶点;且当P点在双曲线左支时,切点为左顶点,且当P点在双曲线右支时,切点为右顶点。
椭圆焦点三角形面积公式的推导过程是对于焦点△F1PF2,设∠F1PF2=θ,PF1=m,PF2=n,则m+n=2a。椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为定点组成的三角形。
在椭圆中,我们通常把焦点与过另一个焦点的弦所围成的三角形叫做焦点三角形,类似地,我们也把顶点与过另一个顶点所对应的焦点弦围成的三角形叫顶焦点三角形。在椭圆的顶焦点三角形中有许多与椭圆焦点三角形相类似的几何特征,蕴涵着椭圆很多几何性质。
双曲线焦点三角形面积公式推导方法是设双曲线方程为x^2/a^2-y^2/b^2=1,根据余弦定理,F1F2^2=PF1^2+PF2^2-2|PF1||PF2|cosθ,||PF1|-|PF2||=2a,|F1F2|=2c,4c^2=4a^2+2|PF1||PF2|(1-cosθ),所以S△PF1F2=1/2|PF1||PF2|sinθ=b^2cot(θ/2)。
在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。
如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。