设刚体中第i个质点的质量为△mi转动公式,该质点离轴的垂直距离为ri,则转动惯量为:J=∑ri2△mi,即刚体对转轴的转动惯量等于组成刚体各质点的质量与各自到转轴的距离平方的乘积之和。刚体的质量可认为是连续分布的,所以上式可写为积分形式:J=∫r2dm,积分式中dm是质元的质量,r是此质元到转轴的距离。比如圆柱体的转动惯量其实就可以看作是一个圆盘的转动惯量在距离盘心r处取一宽为dr的圆环,它的质量dm=m/(pi*r^2)*2pi*rdr然后代入J=∫r^2dm从0到r积分,得到J=1/2mr^2
版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。