公式一和cos的关系:
设α为任意角,终边相同的角的同一三角函数的值相等
k是整数 sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系 sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
公式三:
任意角α与 -α的三角函数值之间的关系 sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系 sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系 sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系 sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
扩展资料:
对于边长为a,b和c而相应角为A,B和C的三角形,有:sinA / a = sinB / b = sinC/c
也可表示为:a/sinA=b/sinB=c/sinC=2R
变形:a=2RsinA,b=2RsinB,c=2RsinC
其中R是三角形的外接圆半径。
它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。在这个定理中出现的公共数 (sinA)/a是通过A,B和C三点的圆的直径的倒数。
正弦定理用于在一个三角形中已知两个角和一个边求未知边和角;已知两边及其一边的对角求其他角和边的问题。这是三角测量中常见情况。
三角函数正弦定理可用于求得三角形的面积:S=1/2absinC=1/2bcsinA=1/2acsinB
参考资料来源:百度百科——三角函数