例如:1011转为11二进制转化为十进制,算法根十进制基本一样,比如十进制
2130=2乘以10的三次方+1乘以10的二次方+3乘以10的一次方+0乘以10的0次方。而二进制只要把上面的102就行了。
二进制11011=1乘以2的四次方+1乘以2的三次方+0乘以2的二次方+1乘以1的一次方+1乘以2的0次方。
十进制转二进制:十进制50,将50整除2得25余数为0,记住这个余数,接下来用25整除2得12余数为1,接着用12整除2得6余数为0,依此类推,6整除2得3余数为0,3整除2得1余数为1,1整除2得0余数为1。直到整除结果等于0为止。然后将所有的余数倒序写出来得110010,即就是50的二进制表示。
就是是第几位就乘以2的几次方 从右往左数
二进制转十进制
从最后一位开始算,依次列为第0、1、2…位
第n位的数(0或1)乘以2的n次方
得到的结果相加就是答案
例如:01101011.转十进制:
第0位:1乘2的0次方=1
1乘2的1次方=2
0乘2的2次方=0
1乘2的3次方=8
0乘2的4次方=0
1乘2的5次方=32
1乘2的6次方=64
0乘2的7次方=0
然后:1+2+0
+8+0+32+64+0=107.
二进制01101011=十进制107
二进制有两个特点:它由两个数码0,1组成,二进制数运算规律是逢二进一。
为区别于其它进制,二进制数的书写通常在数的右下方注上基数2,或加后面加B表示,其中B是英文二进制Binary的首字母。
二进制具有以下优点:
1) 二进制数中只有两个数码0和1,可用具有两个不同稳定状态的元器件来表示一位数码。例如,电路中某一通路的电流的有无,某一节点电压的高低,晶体管的导通和截止等。
2) 二进制数运算简单,大大简化了计算中运算部件的结构。
扩展资料:
位权概念
对于形式化的进制表示,我们可以从0开始,对数字的各个数位进行编号,即个位起往左依次为编号0,1,2,……;对称的,从小数点后的数位则是-1,-2,……
进行进制转换时,我们不妨设源进制(转换前所用进制)的基为R1,目标进制(转换后所用进制)的基为R2,原数值的表示按数位为AnA(n-1)……A2A1A0.A-1A-2……,R1在R2中的表示为R,则有(AnA(n-1)……A2A1A0.A-1A-2……)R1=(An*R^n+A(n-1)*R^(n-1)+……+A2*R^2+A1*R^1+A0*R^0+A-1*R^(-1)+A-2*R^(-2))R2
参考资料:
搜狗百科 进制