一、解的3种通解:
求特征方程r^2+P(x)r+Q(x)=0,解出两个特征根r1,r2 若r1≠r2且r1,r2为实数,
则y=C1*e^(r1*x)+C2*e^(r2*x) 若r1=r2且r1,r2。
二、r是微分方程的特征值,它是通过方程r^2-2r+5=0来求出的。
将其看成一元二次方程,判别式=4-20=-16<0,说明方程没有实数根,但在复数范围内有根,根为: r1=1+2i r2=1-2i;
在复数领域中,z1=a+bi 和z2=a-bi, 及两个复数的实数部分相等,虚数部分互为相反数的复数称为共轭复数;所以本题的两个特征值符合这一关系,故谓共轭复根。
扩展资料:
对于二阶线性递推数列,可采用特征方程法:
对于数列
,递推公式为
其特征方程为
1、 若方程有两相异根p、q ,则
2、 若方程有两等根p ,则
参考资料来源:搜狗百科-特征方程
二阶微分方程的通解的求法是在有些情况下,通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。三种容易用降阶法求解的二阶微分方程分别有y”=f(x)型;y”=f(x,y’)型;y”=f(y,y’)型。
对于一元函数来说,如果在该方程中出现因变量的二阶导数,我们就称为二阶(常)微分方程,其一般形式为F(x,y,y’,y”)=0。
通解是一个解集……包含了所有符合这个方程的解n阶微分方程就带有n个常数,与是否线性无关通解只有一个,但是表达形式可能不同,y=C1y1(x)+C2y2(x)是通解的话,y=C1y1(x)+C2y2(x)+y1也是通解,但y=C1y1就是特解就你所抄的那句话来看是错的,不是二阶线性方程,而是二阶线性齐次方程;在这样的条件下成立的原因是,[y1(x)+y2(x)]’=y1(x)’+y2(x)’,C1y1(x)与C2y2(x)分别满足方程,则自然C1y1(x)+C2y2(x)也满足方程否则如果非齐次方程的话,应该可以从C1y1(x)与C2y2(x)均为方程的解推出y1(x)=ky2(x)这些都是通解的特殊情况
二阶微分方程的通解公式是:y=x(Acosx+Bsinx),对于一元函数来说,如果在该方程中出现因变量的二阶导数,就称为二阶(常)微分方程,其一般形式为F(x,y,y’,y”)=0。
在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。