导数运算,导数八个公式和运算法则是什么?

八个:y=c(c为常数) y’=0;y=x^n y’=nx^(n-1);y=a^x y’=a^xlna y=e^x y’=e^x;y=logax y’=logae/x y=lnx y’=1/x ;y=sinx y’=cosx ;y=cosx y’=-sinx ;y=tanx y’=1/cos^2x ;y=cotx y’=-1/sin^2x。

导数运算,导数八个公式和运算法则是什么?

运算法则:

加(减)法则:[f(x)+g(x)]’=f(x)’+g(x)’

乘法法则:[f(x)*g(x)]’=f(x)’*g(x)+g(x)’*f(x)

除法法则:[f(x)/g(x)]’=[f(x)’*g(x)-g(x)’*f(x)]/g(x)^2

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

扩展资料:

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

函数y=f(x)在x0点的导数f’(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

参考资料来源:搜狗百科——导数

导数的基本公式

c’=0 (x^n)’=nx^(n-1)

(sinx)’=cosx (cosx)’=-sinx

(a^x)’=a^xlna (e^x)’=e^x

(logax)’=1/(xlna) (lnx)’=1/x

导数的运算法则

①(u±v)’=u’±v’

②(uv)’=u’v+uv’

③(u/v)’=(u’v-uv’)/ v^2

版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。
(0)
上一篇 2022年5月28日 下午1:24
下一篇 2022年5月28日 下午1:24

相关推荐