sin(20°)≈0.34202。正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。sin=直角三角形的对边比斜边。斜边为r,对边为y,邻边为a。斜边r与邻边a夹角Ar的正弦sinA=y/r。sin(20°)不是一个特殊角的三角函数值,只能通过计算器求解。扩展资料三角函数值sin0多少:(1)sin0°=0。cos0°=1、tan0°=0。(2)sin30°=1/2、cos30°=√3/2、tan30°=√3/3。(3)sin45°=√2/2、cos45°=√2/2、tan45°=1。(4)sin60°=√3/2、cos60°=1/2、tan60°=√3。(5)sin90°=1、cos90°=0。奇偶性的判定:(1)定义法用定义来判断函数奇偶性,是主要方法.首先求出函数的定义域,观察验证是否关于原点对称.其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。f(-x)=-f(x)奇函数,如:sin(-x)=-sinx。f(-x)=f(x)偶函数,如:cos(-x)=cosx。(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。(3)用对称性若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。(4)用函数运算如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数.简单地,“奇+奇=奇,奇×奇=偶”。
根据任意角三角函数的定义,在单位圆中角A的顶点与原点重合始边与x轴正半轴重合,角A终边与单位元交点坐标为(x,y)则sinA=y,cosA=x,tanA=y/x 0度始边与终边重合,交点坐标为(1,0)则sin0°=0,cos0°=1,tan0°=0 90°的终边与单位圆的交点坐标为(0,1)则sin90°=1,cos90°=0,tan90°没意义 180°角的终边与单位圆交点坐标为(-1,0)则sin180°=0,cos180°=-1,tan180°=0