有界函数,有界函数都有哪些啊???

有正弦sin x 和余弦函数cos x有界函数。

有界函数,有界函数都有哪些啊???

有界函数是设函数f(x)是某一个实数集A上有定义,如果存在正数M 对于一切X∈A都有不等式|f(x)|≤M的则称函数f(x)在A上有界,如果不存在这样定义的正数M则称函数f(x)在A上无界 设f为定义在D上的函数,若存在数M(L),使得对每一个x∈D有: ƒ(x)≤M(ƒ(x)≥L)则称ƒ在D上有上(下)界的函数,M(L)称为ƒ在D上的一个上(下)界。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。又若M(L)为ƒ在D上的上(下)界,则任何大于(小于)M(L)的数也是ƒ在D上的上(下)界。根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。所以,一个数列f= (a0,a1,a2, … ) 是有界的,如果存在一个数M> 0,使得对于所有的自然数n,都有|an| ≤M。

设函数f(x)的定义域为D,f(x)集合D上有定义。如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在X上有上界。

反之,如果存在数字K2,使得 f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。

如果存在正数M,使得 |f(x)|≤M 对任意x∈D都成立,则称函数在X上有界。如果这样的M不存在,就称函数f(x)在X上无界;等价于,无论对于任何正数M,总存在x1属于X,使得|f(x1)|>M,那么函数f(x)在X上无界。

此外,函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。

扩展资料:

函数的有界性与其他函数性质之间的关系。函数的性质:有界性,单调性,周期性,连续性,可积性。

1、单调性

闭区间上的单调函数必有界。其逆命题不成立。

2、连续性

闭区间上的连续函数必有界。其逆命题不成立。

3、可积性

闭区间上的可积函数必有界。其逆命题不成立。

无界函数

类似的我们可以定义无界函数: 设ƒ为定义在D上的函数,若对于任何M(无论M多大),都存在x0∈D,使得|ƒ(x)|≥M。相关详细定义请查看百度百科无界函数

参考资料来源:百度百科-有界函数

一、概念:

设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。

二、有界函数的条件:

设ƒ(x)是区间E上的函数。若对于任意属于E的x,存在常数M>0,使得|ƒ(x)|≤M,则称ƒ(X)是区间E上的有界函数。

三、例子:

正弦函数sin x 和余弦函数cos x为R上的有界函数,因为对于每个x∈R都有|sin x|≤1和|cos x|≤1

四、性质:

1、函数的有界性与其他函数性质之间的关系

2、函数的性质:有界性,单调性,周期性,连续性,可积性。

版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。
(0)
上一篇 2022年5月29日 下午4:26
下一篇 2022年5月29日 下午4:27

相关推荐