三角函数面积公式,三角函数求面积的一个公式!

  ·平方关系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
·积的关系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
·[1]恒等变形
·两角和与差的三角函数
cos(α β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α β)=(tanα tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1 tanα·tanβ)
·三角和的三角函数:
sin(α β γ)=sinα·cosβ·cosγ cosα·sinβ·cosγ cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α β γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α β γ)=(tanα tanβ tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·辅助角公式
Asinα Bcosα=(A² B²)^(1/2)sin(α t),其中
sint=B/(A² B²)^(1/2)
cost=A/(A² B²)^(1/2)
tant=B/A
Asinα-Bcosα=(A² B²)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα cotα)
cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)
tan(2α)=2tanα/[1-tan²(α)]
·三倍角公式:
sin(3α)=3sinα-4sin³(α)
cos(3α)=4cos³(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1 cosα)/2)
tan(α/2)=±√((1-cosα)/(1 cosα))=sinα/(1 cosα)=(1-cosα)/sinα
·降幂公式
sin²(α)=(1-cos(2α))/2=versin(2α)/2
cos²(α)=(1 cos(2α))/2=covers(2α)/2
tan²(α)=(1-cos(2α))/(1 cos(2α))
·万能公式:
sinα=2tan(α/2)/[1 tan²(α/2)]
cosα=[1-tan²(α/2)]/[1 tan²(α/2)]
tanα=2tan(α/2)/[1-tan²(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α β) sin(α-β)]
cosα·sinβ=(1/2)[sin(α β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α β) cos(α-β)]
sinα·sinβ=-(1/2)[cos(α β)-cos(α-β)]
·和差化积公式:
sinα sinβ=2sin[(α β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α β)/2]sin[(α-β)/2]
cosα cosβ=2cos[(α β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α β)/2]sin[(α-β)/2]
·推导公式
tanα cotα=2/sin2α
tanα-cotα=-2cot2α
1 cos2α=2cos²α
1-cos2α=2sin²α
1 sinα=(sinα/2 cosα/2)²
·其他:
sinα sin(α 2π/n) sin(α 2π*2/n) sin(α 2π*3/n) …… sin[α 2π*(n-1)/n]=0
cosα cos(α 2π/n) cos(α 2π*2/n) cos(α 2π*3/n) …… cos[α 2π*(n-1)/n]=0 以及
sin²(α) sin²(α-2π/3) sin²(α 2π/3)=3/2
tanAtanBtan(A B) tanA tanB-tan(A B)=0
cosx cos2x 三角函数公式。
  。。 cosnx= [sin(n 1)x sinnx-sinx]/2sinx
证明:
左边=2sinx(cosx cos2x 。。。 cosnx)/2sinx
=[sin2x-0 sin3x-sinx sin4x-sin2x 。
  。。 sinnx-sin(n-2)x sin(n 1)x-sin(n-1)x]/2sinx (积化和差)
=[sin(n 1)x sinnx-sinx]/2sinx=右边
等式得证
sinx sin2x 。
  。。 sinnx= – [cos(n 1)x cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx sin2x 。。。 sinnx]/(-2sinx)
=[cos2x-cos0 cos3x-cosx 。
  。。 cosnx-cos(n-2)x cos(n 1)x-cos(n-1)x]/(-2sinx)
=- [cos(n 1)x cosnx-cosx-1]/2sinx=右边
等式得证
[编辑本段]三角函数的诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
[编辑本段]正余弦定理
正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .
余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2 c^2-2bc cosA
角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边
斜边与邻边夹角a
sin=y/r
无论y>x或y≤x
无论a多大多小可以任意大小
正弦的最大值为1 最小值为-
[编辑本段]部分高等内容
·高等代数中三角函数的指数表示(由泰勒级数易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix) e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix) ie^(-ix)]
泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此时三角函数定义域已推广至整个复数集。
  
·三角函数作为微分方程的解:
对于微分方程组 y=-y”;y=y””,有通解Q,可证明
Q=Asinx Bcosx,因此也可以从此出发定义三角函数。
补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。
  
特殊角的三角函数:
角度a 0° 30° 45° 60° 90° 120° 180°
1。sina 0 1/2 √2/2 √3/2 1 √3/2 0
2。
  cosa 1 √3/2 √2/2 1/2 0 -1/2 -1
3。tana 0 √3/3 1 √3 无限大 -√3 0
4。cota / √3 1 √3/3 0 -√3/3 /
[编辑本段]三角函数的计算
幂级数
c0 c1x c2x2 。
  。。 cnxn 。。。=∑cnxn (n=0。。∞)
c0 c1(x-a) c2(x-a)2 。。。 cn(x-a)n 。。。=∑cn(x-a)n (n=0。。∞)
它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,。
  。。cn。。。及a都是常数, 这种级数称为幂级数。
泰勒展开式(幂级数展开法):
f(x)=f(a) f'(a)/1!*(x-a) f”(a)/2!*(x-a)2 。。。f(n)(a)/n!*(x-a)n 。
  。。
实用幂级数:
ex = 1 x x2/2! x3/3! 。。。 xn/n! 。。。
ln(1 x)= x-x2/3 x3/3-。。。(-1)k-1*xk/k 。
  。。 (|x| sin x = x-x3/3! x5/5!-。。。(-1)k-1*x2k-1/(2k-1)! 。。。 (-∞ cos x = 1-x2/2! x4/4!-。。
  。(-1)k*x2k/(2k)! 。。。 (-∞ arcsin x = x 1/2*x3/3 1*3/(2*4)*x5/5 。。。 (|x| arccos x = π – ( x 1/2*x3/3 1*3/(2*4)*x5/5 。
  。。 ) (|x| arctan x = x – x^3/3 x^5/5 – 。。。 (x≤1)
sinh x = x x3/3! x5/5! 。。。(-1)k-1*x2k-1/(2k-1)! 。
  。。 (-∞ cosh x = 1 x2/2! x4/4! 。。。(-1)k*x2k/(2k)! 。。。 (-∞ arcsinh x = x – 1/2*x3/3 1*3/(2*4)*x5/5 – 。
  。。 (|x| arctanh x = x x^3/3 x^5/5 。。。 (|x| 在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
  
——————————————————————————–
傅立叶级数(三角级数)
f(x)=a0/2 ∑(n=0。
  。∞) (ancosnx bnsinnx)
a0=1/π∫(π。。-π) (f(x))dx
an=1/π∫(π。。-π) (f(x)cosnx)dx
bn=1/π∫(π。
  。-π) (f(x)sinnx)dx
三角函数的数值符号
正弦 第一,二象限为正, 第三,四象限为负
余弦 第一,四象限为正 第二,三象限为负
正切 第一,三象限为正 第二,四象限为负
[编辑本段]三角函数定义域和值域
sin(x),cos(x)的定义域为R,值域为〔-1,1〕
tan(x)的定义域为x不等于π/2 kπ,值域为R
cot(x)的定义域为x不等于kπ,值域为R
[编辑本段]初等三角函数导数
y=sinx—y’=cosx
y=cosx—y’=-sinx
y=tanx—y’=1/(cosx)² =(secx)²
y=cotx—y’=-1/(sinx)² =-(cscx)²
y=secx—y’=secxtanx
y=cscx—y’=-cscxcotx
y=arcsinx—y’=1/√1-x²
y=arccosx—y’=-1/√1-x²
y=arctanx—y’=1/(1 x²)
y=arccotx—y’=-1/(1 x²)
[编辑本段]反三角函数
三角函数的反函数,是多值函数。
  它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2  
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc 函数名的形式表示反三角函数,而不是f-1(x)。
  
反三角函数主要是三个:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;
y=arccos(x),定义域[-1,1],值域[0,π],图象用兰色线条;
y=arctan(x),定义域(-∞, ∞),值域(-π/2,π/2),图象用绿色线条;
sinarcsin(x)=x,定义域[-1,1],值域 【-π/2,π/2】
证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代如上式即可得
其他几个用类似方法可得。

三角函数面积公式,三角函数求面积的一个公式!

版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。
(0)
上一篇 2022年5月24日 下午10:56
下一篇 2022年5月24日 下午10:56

相关推荐