奇加是非奇非偶函数。
奇函数的性质奇函数加偶函数是函数:
两个奇函数相加所得的和或相减所得的差为奇函数 。
一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。
两个奇函数相乘所得的积或相除所得的商为偶函数。
一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。
当且仅当(定义域关于原点对称)时,既是奇函数又是偶函数。奇函数在对称区间上的积分为零。
偶函数的性质:
图象关于y轴对称。
满足f(-x)=f(x)。
关于原点对称的区间上单调性相反。
如果一个函数既是奇函数有是偶函数,那么有f(x)=0。
定义域关于原点对称(奇偶函数共有的)。
奇函数减偶函数是非奇非偶函数,如果对于函数定义域内的任意一个x,若f(-x)=-f(x)(奇函数)或f(-x)=f(x)(偶函数)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。判断函数奇偶性的第一步就是判断函数的定义域是否关于数零对称(这里很多人不能理解,网上也经常有很多错误的实例,定义域应该关于数零对称,并不是关于原点对称,也不是关于y轴对称),如果定义域不关于数零对称那么显然是非奇非偶函数。
奇函数加减偶函数是非奇非偶函数。设f(x)为偶函数,g(x)是奇函数令f(x)=f(x)+g(x)F(-x)=f(-x)+g(-x)=f(x)-g(x)≠f(x)+g(x)=F(x)也≠-[f(x)+g(x)]=-F(x),即非奇非偶函数。
已知f(x)为奇函数,g(x)为偶函数,且两者的定义域相同,判断f(x)+g(x)的奇偶性。
解:由题意知f(x)=–f(–x),g(x)=g(–x),令h(x)=f(x)+g(x),则h(x)的定义域关于原点对称。
h(–x)=f(–x)+g(–x),而h(x)不等于h(–x),–h(–x)=–f(–x)–g(–x),即h(x)不等于–h(–x),因此h(x)为非奇非偶函数。