一元三次方程韦达定理,请给出一元三次方程的韦达定理

一元为一元三次方定理:x1x2x3=-d/a

一元三次方程韦达定理,请给出一元三次方程的韦达定理

以下为证明:

一元三次方程韦达定理,请给出一元三次方程的韦达定理

ax^3+bx^2+cx+d

=a(x-x1)(x-x2)(x-x3)

=a[x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3]

对比系数得

-a(x1+x2+x3)=b

a(x1x2+x2x3+x1x3)=c

a(-x1x2x3)=d

即得

x1+x2+x3=-b/a

x1x2+x2x3+x1x3=c/a

x1x2x3=-d/a

法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。 

利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。

扩展资料:

定理推广

逆定理

如果两数α和β满足如下关系:

α+β= 

α·β= 

那么这两个数α和β是方程

 的根。

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

推广定理

韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。

定理:

设 

 (i=1、2、3、……n)是方程:

 的n个根,记

(k为整数),则有:

参考资料:

百度百科-韦达定理

  三次方程的通
韦达定理(Vieta’s Theorem)的内容
一元二次方程ax^2 bx c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1 X2= -b/a
X1*X2=c/a
广义韦达定理
韦达定理在更高次方程中也是可以使用的。
  一般的,对一个一元n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
我们有
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)

∏Xi=(-1)^n*A(0)/A(n)
其中∑是求和,∏是求积。
  
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
  
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
韦达定理在方程论中有着广泛的应用。
  

设三次方程为ax^3+bx^2+cx+d=0,展开得到:ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0。对比原专方程ax^3+bx^2+cx+d=0可知:(x1+x2+x3=-b/a)=(x1*x2+x2*x3+x3*x1=c/a)=(x1*x2*x3=-d/a),这就是三次函数的韦达定理。韦达定理说明了一元二次方程中根和系数之间的关系。法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。三次方程指的是一种数学的方程式。三次方程是未知项总次数最高为3的整式方程。三次方程的解法思想是通过配方和换元,使三次方程降次为二次方程,进而求解。其他解法还有因式分解法、另一种换元法、盛金公式解题法等。

版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。
(0)
上一篇 2022年5月25日 上午9:50
下一篇 2022年5月25日 上午9:50

相关推荐