差(Standard Error)是方差(Variance)的平方根,对一组测量中的特大或特小误差反映非常敏感,能够很好地反映出测量结果波动大小标准误和标准差的。这正是标准差在工程测量中广泛被采用的原因。
中误差是衡量观测精度的一种数字标准,亦称“标准差”或“均方根差”。在相同观测条件下的一组真误差平方中数的平方根。因真误差不易求得,所以通常用最小二乘法求得的观测值改正数来代替真误差。它是观测值与真值偏差的平方和观测次数n比值的平方根。
标准差和标准误的区别:
1、表示含义不同:
(1)标准差是指离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
(2)标准误是样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。
2、反映情况不同:
(1)标准差在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。
标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
(2)标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。
标准差和标准误的:标准误不是标准差,是多个样本平均数的标准差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方根误差。
扩展资料
1、标准差意义:
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
2、离均差平方和:
由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。
但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。
为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。
参考资料来源
百度百科-标准差
百度百科-标准误
原发布者:terrygreat
标准差与标准误的区别一、标准差(standarddeviation,缩写 SD或者S)在国家计量技术规范中,标准差的正式称是标准偏差,简称标准差,用符号σ表示。标准差的名称有10余种,如总体标准差、母体标准差、均方根误差、均方根偏差、均方误差、均方差、单次测量标准差和理论标准差等。标准差的定义式为:如果用样本标准差s的值作为总体标准差σ的估计值。样本标准差的计算公式为:二、标准误(标准误差,standarderror,缩写Sx或SE) )在抽样试验(或重复的等精度测量)中,常用到样本平均数的标准差,亦称样本平均数的标准误或简称标准误(standarderrorofmean)。因为样本标准差s不能直接反映样本平均数 x与总体平均数μ究竟误差多少,所以,平均数的误差实质上是样本平均数与总体平均数之间的相对误。可推出样本平均数的标准误为,其估计值为,它反映了样本平均数的离散程度。标准误越小,说明样本平均数与总体平均数越接近,否则,表明样本平均数比较离散。标准误,衡量的是我们在用样本统计量去推断相应的总体参数(常见如均值、方差等)的时候,一种估计的精度。样本统计量本身就是随机变量,每一次抽样,都可以根据抽出的样本情况计算出一个不同的样本统计量值。理论上来讲,从既定的总体中按照既定的样本规模n,穷尽所有可能抽出的样本(不妨假设为NN),根据这些样本可以计算出NN个样本统计量值,把这些统计量值分组绘成直方图(X轴为分组的统计量数值,Y轴为落在某一分组区间