(a+bi)/(c+di)=(a+bi)(c-di)/(c+di)(c-di)
=(ac+bd+(bc-ad)i)/(c^2+d^2)
一般化成三角式比较简单
r1(cosθ1+isinθ1)/[r2(cosθ2+isinθ2)]
=(r1/r2)[cos(θ1-θ2)+isin(θ1-θ2)]
拓展资料:
基本内容
将分母实数化,也就是把除法换算成乘法做,在分子分母同时乘上分母的共轭。
所谓共轭可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数。
先在分子分母上同时乘以(c-di),这是(c+di)的共轭。这样分母变为常数,做起来就易如反掌了。
(a+bi)/(c+di)
=(a+bi)*(c-di)/(c+di)*(c-di)
=(ac-adi+bci+bd)/(c*c+d*d)
=(ac+bd)/(c^2+d^2)+〔(bc-ad)/(c^2+d^2)〕i
复数除法的几何意义是在复平面内,商的模等于被除数和除数的模的商,商的辐角等于被除数和除数的辐角的差。或者(a+jb)/(c+jd)
=(a+jb)(c-jd)/(c+jd)(c-jd)
=(ac+bd)/(c*2+d*2)+j(bc-ad)/(c*2+d*2)
版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。