式: 在n阶中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式余子式。 一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。 例子: 例1 在五阶行列式 中,划定第二行、四行和第二列、三列,就可以确定D的一个二阶子行列式 A的相应的余子式M为:子行列式A的相应的代数余子式
所有代数余子式之和等于这个伴随矩阵所有元素之和,直接求它的伴随矩阵就行,然后伴随矩阵各个元素相加即为所求。
在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。
扩展资料
计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素的代数余子式与的值无关,仅与其所在位置有关。
利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得的值。
参考资料来源:搜狗百科-代数余子式
代数余子式:
在一个n级行列式D中任意选定k行k列(k小于等于n).位于这些行和列的焦点上的k*k个元素按照原来的次序组成的一个k级行列式M,称为行列式D的一个k级子式.在D中划去这k行k列后余下的元素按照原来的次序组成的n-k级行列式M’称为k级子式M的余子式.
伴随矩阵:
在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
所有代数余子式之和等于这个伴随矩阵所有元素之和,直接求它的伴随矩阵就行,然后伴随矩阵各个元素相加即为所求。
在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。
扩展资料
计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素的代数余子式与的值无关,仅与其所在位置有关。
利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得的值。
参考资料来源:百度百科-代数余子式