12粒围棋子从中任取3粒的总数是C(12,3) 取到3粒的都是白子的情况是C(8,3) ∴概率 C(8,3) P=——————=14/55 C(12,3) 附cnm:排列、组合排列:从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。 排列数:从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Anm 排列公式:A(n,m)=n*(n-1)*…..(n-m+1) A(n,m)=n!/(n-m)! 组合:从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。 组合数:从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm 组合公式:C(n,m)=A(n,m)/m!=n!/(m!*(n-m)!) C(n,m)=C(n,n-m)
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)….(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)….(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m