积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算向量。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量的和垂直。
几何意义
叉积的长度 |a×b| 可以解释成以a和b为邻边的平行四边形的面积。
混合积 [a b c] = (a×b)·c可以得到以a,b,c为棱的平行六面体的体积。
代数规则
反交换律:
a×b= -b×a
加法的分配律:
a× (b+c) =a×b+a×c
与标量乘法兼容:
(ra) ×b=a× (rb) = r(a×b)
不满足结合律,但满足雅可比恒等式:
a× (b×c) +b× (c×a) +c× (a×b) =0
分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的 R3 构成了一个李代数。
两个非零向量 a 和b 平行,当且仅当a×b=0
版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。