计算差的步骤通常有四步标准差怎么求:
(1)计抄算平均值
(2)计算方差2113
(3)计算平均方差
(4)计算标准差
例如,对于一个有六5261个数的数集2,3,4,5,6,8,其标准差可通过以下步骤计算:4102
(1)计1653算平均值:
(2 + 3 + 4 + 5+ 6 + 8)/6 = 30 /6 = 5
(2)计算方差:
(2 – 5)^2 = (-3)^2= 9
(3 – 5)^2 = (-2)^2= 4
(4 – 5)^2 = (-1)^2= 0
(5 – 5)^2 = 0^2= 0
(6 – 5)^2 = 1^2= 1
(8 – 5)^2 = 3^2= 9
(3)计算平均方差:
(9 + 4 + 0 + 0+ 1 + 9)/6 = 24/6 = 4
(4)计算标准差:
√4 = 2
标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +……(xn-x)^2)/n)。
一、简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
二、标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
注:由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
标准差(Standard Deviation) 各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数 标准差是方差的算术平方根。 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 标准差也被称为标准偏差,或者实验标准差。 关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。 公式如图。 P.S. 在EXCEL中STDEVP函数就是下面评论所说的另外一种标准差,也就是标准差。在繁体中文的一些地方可能叫做“母体标准差” 因为有两个定义,用在不同的场合: 如是总体,标准差公式根号内除以n, 如是,标准差公式根号内除以(n-1), 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1),
样本标准差
在真实世界中,除非在某些特殊情况下,找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。
标准差是描述一组观察值离散趋势的常用指标,描述离散程度的指标还有:
极差(全距) R=最大值-最小值
式中n-1称为自由度。
样本标准差
总体标准差
总体的指标称为参数,用希腊字母表示,如总体均数(μ),总体标准差(σ),总体率(π),样本的指标称为统计量,用拉丁字母表示,如样本均数(),样本标准差(S),样本率(P)。
标准差的应用:
(1)说明观察值离散程度的大小,若两组观察值单位相同,均数相近,则标准差愈小,表示观察值离散程度愈小。观察值围绕均数分布较密集,均数的代表性较好。
(2)与均数一起描述正态分布资料的特征。
(3)计算变异系数当两组观察值的单位不同或者两组单位相同而均数相差很大时,需计算变异系数比较两组资料的变异程度大小。
(4)计算标准误。
因为有两个定义,用在不同的场合:
如是总体,标准差公式根号内除以n,
如是样本,标准差公式根号内除以(n-1),
因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)