韦达
-
一元三次方程韦达定理,请给出一元三次方程的韦达定理
一元程为一元三次方程定理:x1x2x3=-d/a 以下为证明: ax^3+bx^2+cx+d =a(x-x1)(x-x2)(x-x3) =a[x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3] 对比系数得 -a(x1+x2+x3)=b a(x1x2+x2x3+x1x3)=c a(-x1x2x3)=d 即得 x1+x2+x3…
一元程为一元三次方程定理:x1x2x3=-d/a 以下为证明: ax^3+bx^2+cx+d =a(x-x1)(x-x2)(x-x3) =a[x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3] 对比系数得 -a(x1+x2+x3)=b a(x1x2+x2x3+x1x3)=c a(-x1x2x3)=d 即得 x1+x2+x3…